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Crop-protection compounds are useful tools that enhance the quality of the food we enjoy. However,
crop-protection products can enter aquatic systems either by direct or by indirect application. To
better understand the possible frequency and magnitude of exposure to water resources, the regulatory
community has developed a set of relatively straightforward models for estimating exposure to these
water systems. The focus of this research was to compare how well the estimates of exposure to
drinking water based on model calculations relate to actual monitoring data. Physical/chemical property
data were entered in the EPA’s exposure model FIRST and into PRZM/EXAMS. The predictions
from FIRST and PRZM/EXAMS were then compared to actual monitoring data from a USGS/EPA
cooperative program, which monitored for pesticides in vulnerable surface drinking water supplies
during 1999 and 2000. Results from this examination indicate the exposure from the models can
overpredict concentrations found in water by several orders of magnitude. An overprediction factor
is presented that corrects model predictions to more closely approximate concentrations found in
reservoirs (p = 0.05).
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INTRODUCTION only be as good as its representation of the environment it is
designed to predict. When the Office of Pesticide Programs
(OPP) at the U.S. Environmental Protection Agency (EPA)
assesses the risk of a pesticide, it considers the toxicity of the
pesticide as well as exposure to the pesticide. In assessing risk

Many synthetic compounds have been developed over the
years in an effort to improve people’s lives. However, it is
society’s obligation to ensure that these compounds do not
deletgrloqsly affect the environment. Therefpre, to evaluate the,[0 human health and the environment, the OPP routinely
possible impact of compounds on the environment, methods stimates concentrations of pesticides in natural water bodies
needed to be developed to allow assessments to be conducted. pesti . ’

S . ~such as lakes or ponds, when it develops aquatic exposure
One of the goals of the scientific and regulatory community o .
. assessments. The pesticide program also estimates concentra-
has been to develop a standard set of exposure models to predu:t? s . ) ! .

: lons of pesticides in water bodies when it considers the effect
expected environmental exposure based on proper use of CTOPYt pesticides on the value of water resources in its water qualit
protection products. Exposure models have been developed to P . ) . quailty

. N assessments. OPP typically relies on mathematical models to
help predict and extrapolate compound behavior in groundwater, - L -
- enerate the exposure estimates for drinking water and aquatic
surface water, and soil systems. Exposure models have becomd

popular in the regulatory community and with entities being exposure assessments and water quality assessments. Models

. calculate estimated environmental concentrations using labora-
regulated because relatively few measurements can be used t . . -
. ’ ) " ory data that describe how quickly the pesticide degrades and
extrapolate to a wide variety of environmental conditions.

. . - how it may move in the environment.
However, the effectiveness of a model to predict behavior can . .
FIRST is a program used to calculate both acute and chronic

generic expected environmental concentration values in drinking
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basf-corp.com]. water (DWECS). FIRST estimates ru_nof_f froma Watershe_d into
T BASF Corp. a reservoir that would be used for drinking water. FIRST is the
gg)éngrerg?océ%?eﬁégt%tion- EPA’s first tier or coarse screen, which estimates expected water
# Do%,'v Ag,ogciences_- concentrations from a few basic chemical parameters and label
Y DuPont Crop Protection. information. FIRST is designed to mimic a PRZM/EXAMS
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Table 1. Summary of the Compounds Modeled, the Scenario Chosen, Application Method with Application Rate and Number of Applications

rate (Ib/ appl no.
compound (class) EPA model scenario used acre) (interval) appl method
aldicarb (1) CA fruit (noncitrus) 10 1 ground
aldicarb (1) MS cotton 5 1 ground
aldicarb (1) FL citrus 5 1 ground
bromoxynil (H) MS cotton 0.5 3 (10 days) aerial
carbaryl (1) FL citrus 5 4 (14 days) aerial
acifluorfen (H) MS soybean 0.5 1 ground
bentazon (H) MS soybean 1 2 (14 days) ground
dicamba (H) CA alfalfa 0.5 2 (14 days) ground
imazaquin (H) MS soybean 0.13 1 ground
imazethapyr (H) OH corn 0.1 1 ground
MCPA (H) OR wheat 2 2 (90 days) ground
bentazon (H) MS soybean 1 2 (90 days) ground
dicamba (H) CA alfalfa 0.5 2 (14 days) ground
2,4-D (H) FL sugarcane 2.00 1 ground
2,4-DB (H) TX alfalfa 2.00 1 ground
clopyralid (H) OH corn 0.50 1 ground
flumetsulam (H) OH corn 0.07 1 ground
oryzalin (H) NC apples 6.00 1 ground
picloram(H) OR wheat 0.25 1 ground
tebuthiuron (H) FL sugarcane 20.00 1 ground
triclopyr (H) OR Christmas 9.00 1 aerial
benomyl (F) GA onions 1.0 3 (14 days) aerial
bensulfuron-methyl (H) 0.1 1 aerial
bromacil (H) FL citrus 19 2 (60 days) ground
chlorimuron-ethyl (H) MS soybean 0.019 2 (14 days) aerial
diuron (H) 12.0 1 ground
linuron (H) PA vegetable 1.0 2 (14 days) ground
methomyl (1) PA vegetable 0.9 10 (2 days) ground
metsulfuron-methyl (H) 0.188 1 ground
nicosulfuron (H) OH corn 0.063 1 aerial
oxamyl (1) NC apples 1.0 8 (5 days) airblast
sulfometuron-methyl (H) OR Christmas 0.375 1 ground
terbacil (H) LA sugarcane 12 2 (60 days) aerial
tribenuron-methyl (H) TX wheat 0.016 2 (14 days) aerial
2-hydroxyatrazine (D) LA sugarcane 4 (21 days) aerial
atrazine(H) LA sugarcane 25 4 (21 days) aerial
deethylatrazine (D) LA sugarcane 0.333 4 (21 days) aerial
deisopropylatrazine (D) LA sugarcane 0.07 4 (21 days) aerial
fluometuron (H) MS cotton 17 3 (14 days) ground
metalaxyl (F) GA peaches 4 3 (90 days) aerial
norflurazon (H) FL citrus 3.8 2 (180 days) ground
propiconazole (F) PA turf 1.78 4 (7 days) ground

simulation. For tier 2 surface water screening assessments, thé&-IRST model was conducted by the registrants, whereas the tier Il
OPP uses the linked PRZM and EXAMS models (PRZM/ PRZM/EXAMS modeling was done by a third-party company. The
EXAMS), which better model the specific characteristics of the FIRST model provides an acute and a chronic value, whereas the
chemical. Standard scenarios used with PRZM/EXAMS include PRZM/EXAMS models were run for multiple years using the specific
more site-specific information regarding the application method ¢oP and specific weather scenarios used by the EPA. For tier Il

and the impact of daily weather on the treated field over a period modeling, results from the multiple-year runs were sorted from high
of 36 years compared to tier | models. As a higher level to low, and the 90th percentile result was the value used for comparison

’ . 2 for both acute and chronic endpoints (following standard
screening tool, PRZM/EXAMS uses maximum application rates or both acute and chronic endpoints (following standard agency

. A > procedures). Results from the modeling runs were then compared to
and frequencies for a vulnerable surface drinking water reservoir. ina maximum monitoring values found in the USGS reservoir study,

The focus of this work was to evaluate the ability of two Ppesticides in Selected Water Supply Resies and Finished Drinking
exposure models, FIRST and PRZM/EXAMS, to predict Water 1999—2000 Summary of Results from a Pilot Monitoring
pesticide concentrations found in actual reservoirs used for Program(8). A brief historical background on the reservoir study design
drinking water supply following standard EPA regulatory is provided. The International Life Sciences Institute (ILSI) held a
modeling practice. workshop to address the question of water sampling frequency and
what various sampling schemes represent concerning accuracy and
precision (9). The ILSI group comprised academics, regulators, and
MATERIALS AND METHODS industry scientists. Conclusions from the workshop were that collection

One of the primary requirements for the compounds selected in this 0f 33 samples per season produced 50th, 95th, and 99th percentile
Comparison is that they were monitored for in the Study we used for estimates, which were well within the 90% confidence interval, and
comparison. Additional factors that helped determine which molecules between 1 and 25% of the true estimates. Furthermore, sampling weekly
were selected included availability of compound physical/chemical was determined to be adequate for estimating the 50th, 90th, and 95th
property information and that the EPA had standard crop scenarios percentile concentrations for acute assessments. Site number could also
available for the uses we needed to model predictions for at the tier Il be substituted for the required number of sampling years to accurately
level. Model input parameterization of physie@hemical properties describe concentrations. The conclusions from the workshop were
was done following EPA standard operation procedutesr), which independently verified by a group of statisticians at the Research
can be found on the EPA’s OPP water model Web site. The physical Triangle Institute, Research Triangle Park, N&@.(The findings of
chemical properties themselves were provided by the registrants havingthe ILSI group were used to design the USGS reservoir study we used
compounds modeled in this research. The tier | modeling using the in this comparison.
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results. Figure 2. Tier | acute overprediction (modeling/monitoring) by compound.
The stated objectives of the USGS reservoir study were to provide Log/Log Plot - Tier I Acute
estimates of annual-mean pesticide concentrations and high concentra- 190 E
tions that occur for short periods of time, such as the annual 95th and 1 =064
99th percentile concentrations. The study collected and analyzed water ]
samples for two years from 12 reservoirs distributed throughout the E
country. Monitoring frequencies varied from site to site and ranged ’g 104
from a bimonthly baseline with 11 samples in a year to enhanced g E
sampling (every 3 days) at some sites during the use season for ag ]
maximum of 37 samples per year. Sample collection was focused on & 1
the primary application times for the products, M&yeptember. f} )
Periodic samples were collected in the winter months, normally = 14
targeting January. The authors of the reservoir study state that the 2 3
systems selected for the monitoring program were reservoirs consideredg ]
to be highly vulnerable to pesticide contamination. 2 |
Table 1is a summary of the compounds used for comparison in  *
this study along with the model scenario used, application rate, and § 0.14m -
method of application. For tier | comparisons of modeling to monitoring ]
data, the monitoring value used was the maximum observed for both ]
acute and chronic model result comparisons. For tier Il comparisons T T T T
of modeling to monitoring data, the acute modeled result was compared 100 o 1000 10000
to the maximum observed monitoring value obtained. For tier Il chronic Log - Overprediction (Modeling/Monitoring)
comparison of modeling to monitoring data, the modeled result was Figure 3. Regression of total pounds applied to tier | acute model
compared to the 95% monitoring value obtained. overprediction.
RESULTS AND DISCUSSION from this relationship based on a simple regression. The next

Tier | Modeling versus Monitoring. Once model runs were ~ St€P in our analysis was to make the same comparison done
completed using FIRST, it was then possible to compare the with the acute values using the model-predicted chronic

predicted exposure estimates to actual monitoring data collected concentrationsFigure 4 is the comparison of tier | chronic
Figure 1 is the comparison of tier | predicted reservoir predicted reservoir concentrations with actual measured values.

concentrations with actual measured values. Modeled versusModeled versus monitored data are sorted from greatest over-
monitored data are sorted from greatest overprediction to the Prediction to the least as paired comparisons. Results presented
least as paired comparisons. Results presenteBigare 2 in Figure 5 indicate that chronic modeling values resulted in
indicate that modeling resulted in several orders of magnitude Several orders of magnitude overprediction compared to actual
overprediction compared to actual water concentrations. To Water concentrations. As done similarly with the acute analysis,
determine if there was any relationship between overprediction @ plot of the log of total active ingredient applied to the log of
and model input, input factors were analyzed using a backward overprediction (modeling/monitoring) was created. A plot of
stepwise regression. The backward stepwise analysis was usethe relationship can be found ifrigure 6. A regression

to confirm and check that the authors had not overlooked any coefficient of 0.39 (%) was determined from the relationship,
process that might contribute to predictions. It was determined which was not as predictive as the acute relationship. It was
that the total compound application rate (application rate  not anticipated that a chronic relationship would be as predictive
number of applications) was the best indicator of model as the acute relationship was. A simple explanation for the
overprediction.Figure 3 is a plot of the log of total active  differences in acute and chronic model prediction relationship
ingredient applied to the log of overprediction (modeling/ to total applied compound would be that acute (instantaneous)
monitoring). A regression coefficient of 0.6&)was determined model prediction does not take into consideration any degrada-
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Figure 7. Comparison of tier Il acute model predictions versus monitoring
results.

Used Maximum Monitoring Value Found

Figure 5. Tier | chronic overprediction (modeling/monitoring) by compound.

tion mechanisms, whereas a chronic model prediction does.analysisFigure 9 is a plot of the log of total active ingredient
Because chronic model prediction includes degradation mech-applied to the log of overprediction (modeling/monitoring). A
anism processes, this can lead to sources of variance assimple regression coefficient of 0.7€2 was determined from
environmental conditions change. this relationship. The next step in our analysis was to make the
Tier Il Modeling versus. Monitoring. To make comparisons  same comparison done with the acute values using the model
of modeling to monitoring at tier Il, the coupled exposure predicted chronic concentrations. However, chronic comparisons
models PRZM and EXAMS were used consistent with EPA were made to 95th percentile monitoring values, whereas all
methodology. Once modeling was completed using PRZM/ other comparisons were made to the maximum residue value
EXAMS, it was then possible to compare the predicted exposure found.Figure 10is the comparison of tier 1l chronic predicted
estimates to actual monitoring data collectBdjure 7 is the reservoir concentrations with actual measured values. Modeled
comparison of tier Il predicted reservoir concentrations with versus monitored data are sorted from greatest overprediction
actual measured values. Modeled versus monitored data ardo the least as paired comparisons. Results presentedtine
sorted from greatest overprediction to the least as paired 11indicate that chronic modeling values resulted ird2orders
comparisons. Results presented Higure 8 indicate that of magnitude overprediction compared to actual water concen-
modeling resulted in several orders of magnitude overprediction trations. As similarly done with the acute analysis, a plot of the
compared to actual water concentrations. To determine if therelog of total active ingredient applied to the log of overprediction
was any relationship between overprediction and model input, (modeling/monitoring) was made. A plot of the relationship can
factors were analyzed using a backward stepwise regression ade found inFigure 12. A regression coefficient of 0.413r
was done for the tier | modeling. On the basis of this analysis, was determined from the relationship, which was not as
it was determined that total application (pounds/acre) was the predictive as the acute relationship was. Because acute model
best indicator of model overprediction, similarly to tier 1 prediction does not take into consideration any degradation
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overprediction. Figure 11. Tier Il chronic overprediction (modeling/monitoring) by
compound.

mechanisms whereas a chronic model prediction does, it was
not anticipated that a chronic relationship would be as predictive reduction in overprediction was obtained using tier Il model-
as the acute relationship was. Although the findings of tier Il ing methodology, the reductions were not consistent or a great
modeling were similar to those found in the tier | work, tier Il improvement in accuracyigure 14 is a comparison of tier |
modeling regression relationships were slightly more predictive to tier Il chronic model predictions. From the comparison in
than those developed in the tier | modeling. Tier Il modeling Figure 14, it is apparent that some reduction in overprediction
could have been expected to provide a slightly better regressionwas obtained using tier Il modeling methodology; however, the
relationship because it requires many more inputs, which shouldreductions were not consistent or a great improvement in
help increase precision. accuracy, either. To gain some understanding of the model-
Comparison of Tier | to Tier Il Modeling. The purpose of ing overpredictions observed in this work, it is necessary to
a tiered assessment process is that at tier | a simple and quickexamine the conceptual index reservoir configured to represent
assessment procedure is followed with the compromise of actual water bodies. The EPA’s index reservoir is a 172.8 ha
reduced predictability. At tier 1l, a more involved assessment area watershed with a 5.3 ha surface area reservoir. The reservoir
process is required with the hope that a better prediction of is placed in the center of the watershed. The modeling includes
environment exposure will be achieved. Because parametriz-spray drift from either aerial or ground application methods,
ing a tier 1l model requires more data and time to obtain a which directly enters the reservoir from all directions. The
prediction, a question of interest is whether the time and data conceptual index reservoir design does not account for runoff
requirements are worthwhil&igure 13is a comparison of tier ~ from fields untreated with the compound of concern. The
| to tier Il acute model predictions. On the basis of the conceptual design has no base flow into the reservoir nor dilu-
comparison inFigure 13, it is apparent that although some tion of runoff water concentrations predicted to leave the field
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overprediction used to develop the overprediction factor.
traveling to the index reservoir. The index reservoir that both

the FIRST model and PRZM/EXAMS are meant to model Processes were an influence on their usefulness for development

has no vegetative buffers or noncropped land. There is no of an overprediction factor. Therefore, acute exposure predic-
. . : o

temporal component between when a storm event begins and'ons pro_vu_jed a stronger indicatio®(= 0.72) that an

when it reached the index reservoir so that as soon as a rainoverpredlctlo_n correction factor_ could be develop_eo! from total

event occurs, it immediately enters the water-receiving body. pounds applied being propor.tlonal to oyerpredlctlon. Acute

The scenario and it is implementation are more similar to an (instantaneous) model predictions do not include the influence

agricultural field with an adjacent farm pond than to a drinking _Of compound degradatlt_)n because they are meant to be
water reservoir watershed system. Because the watershed angstantan_eous concentration values. Therefo_re, the influence of
reservoir system modeled are unrepresentative of an actuaffcdradation was minimized as a confounding factor for the

watershed, it should not be surprising that predictions do not de¥ﬁlopment (_)f adcorrlectloc? f_actor.lSd ibes the relati
approximate actual concentrations found in drinking water . € regression develope “‘"9‘.”6 escribes the relation-
supply reservoirs. ship between total pounds applied and the tier Il acute PRZM/

Development of a Modeling to Monitoring Correction EXAMS model p_red|ct_|or_13._
Factor. Because our backward stepwise regression analysis From the relationship ifrigure 15, eq 1 was developed
confirmed that ther(_a was a relationship betwee_n the total gm_ount y = 2.156+ 1.03584x 1)
of compound applied in the models and their overprediction,
our findings are consistent with those of other researchi€rs ( wherey = log of model overprediction and = log of total
12). Therefore, an examination was made to determine if an active applied.
overprediction correction factor could be developed. Although  As a computational example, the dicamba use pattern has a
chronic exposure followed the trend that total pounds applied maximum application rate of 0.5 Ib/ac two applications for
was proportional to overprediction?(= 0.41), degradation  a total seasonal active application rate of 1.0 Ib/ac.
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Table 2. Summary of NAWQA Monitoring Results and Overprediction Factor Corrected Concentrations?

observed
total tier Il model corrected NAWQA (95th)
compound (class) EPA model scenario used appl (Ib) conc (uglL) conc (uglL) conc (uglL) n
aldicarb (1) CA fruit (noncitrus) 10 98.7 0.063 <0.55 (LOQ) 5980
bromoxynil (H) MS cotton 15 88.3 0.405 <0.035 (LOQ) 5887
acifluorfen (H) MS soybean 0.5 13.4 0.192 <0.035 (LOQ) 6014
bentazon (H) MS soybean 2 325 0.111 0.1(LOQ) 6488
dicamba (H) CA alfalfa 1 325 0.227 <0.035 (LOQ) 6043
imazaquin (H) MS soybean 0.13 3.09 0.179 0.058 1214
imazethapyr (H) OH corn 0.1 3.06 0.232 0.028 1128
MCPA (H) OR wheat 4 81 0.135 <0.07 (LOQ) 6218
2,4-D (H) FL sugarcane 2 145 0.494 0.362 7129
2,4-DB (H) TX alfalfa 2 140 0477 <0.24 (LOQ) 5938
clopyralid (H) OH corn 05 15.8 0.226 <0.23 (LOQ) 5976
flumetsulam (H) OH corn 0.07 2.25 0.247 <0.11 (LOQ) 1084
oryzalin (H) NC apples 6 161 0.176 <0.31 (LOQ) 6056
picloram(H) OR wheat 0.25 5.27 0.155 <0.05 (LOQ) 5763
tebuthiuron (H) FL sugarcane 20 1350 0.423 0.049 (LOQ) 14133
benomyl (F) GA Onions 3 9.34 0.021 0.024 1182
linuron (H) PA vegetable 2 35 0.119 <0.08 (LOQ) 259
methomyl () PA vegetable 9 16.3 0.012 <0.017 (LOQ) 105
nicosulfuron (H) OH corn 0.063 1.92 0.235 <0.013 (LOQ) 1089
sulfometuron-methyl (H) OR Christmas 0.375 1.87 0.036 0.025 1165
terbacil (H) LA sugarcane 24 125 0.352 <0.034 (LOQ) 10223
atrazine(H) LA sugarcane 10 438 0.282 14 23726
metalaxyl (F) GA peaches 12 101 0.054 0.04 656
norflurazon (H) FL citrus 7.6 215 0.184 <0.042 (LOQ) 6101
propiconazole (F) PA turf 7.12 125 0.114 <0.021 (LOQ) 1112
@These data do not include the USGS reservoir study.
Then Conclusions. The historical development of the index
reservoir model concept begins at the development of the EPA’s
log of 1.0 Ib/ac= 0.0 farm pond scenario. The farm pond, like the index reservaoir,

x = log of 1.0 Ib/ac or 0.0 has a field surrounding a water body that all of the designated
’ ’ area drains into. Spray drift moves into the water body at a

y = 2.156+ 1.03584x 0.0 fixed percentage of applied as well. Whereas the farm pond is
a more plausible representation of an actual environment, the

same representation of an actual environment for the index
reservoir has many more conceptual problems. It is suggested
that if the conceptual model representing an actual environment

taking 10, y &~ 143.21 over prediction factor
(modeling/monitoring)

residue correctiorr 1/143.21x model prediction of 47.4g/L is incorrect to begin with, it should not be possible for the
conceptual model to reflect actual exposure. The inability of
or the models and the appropriate scenarios to predict surface water

concentrations is strongly indicated from our work. We suggest
that the failure of the conceptual index reservoir model to reflect

The PRZM/EXAMS scenario yielded an acute concentration actual environmental factors is the dominant issue for poor
of 47.4ug/L. Taking into account the overprediction factor, a model predictions. Because comparisons presented in this paper
reasonable monitoring concentration value of Q@& might indicate that model predictions can range several orders of
be expected in larger bodies of water using the overprediction Magnitude greater than monitoring results, where monitoring
correction factor. The actual maximum concentration found in data are available, it is most scientifically sound to use them.
the USGS reservoir study was 046/L. To address the concern Additionally, the use of the overcorrection should be useful to
that the two year monitoring study might not adequately describe indicate more realistic exposure estimates.
the magnitude and frequency of residues occurring in water,
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