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Crop-protection compounds are useful tools that enhance the quality of the food we enjoy. However,
crop-protection products can enter aquatic systems either by direct or by indirect application. To
better understand the possible frequency and magnitude of exposure to water resources, the regulatory
community has developed a set of relatively straightforward models for estimating exposure to these
water systems. The focus of this research was to compare how well the estimates of exposure to
drinking water based on model calculations relate to actual monitoring data. Physical/chemical property
data were entered in the EPA’s exposure model FIRST and into PRZM/EXAMS. The predictions
from FIRST and PRZM/EXAMS were then compared to actual monitoring data from a USGS/EPA
cooperative program, which monitored for pesticides in vulnerable surface drinking water supplies
during 1999 and 2000. Results from this examination indicate the exposure from the models can
overpredict concentrations found in water by several orders of magnitude. An overprediction factor
is presented that corrects model predictions to more closely approximate concentrations found in
reservoirs (p ) 0.05).
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INTRODUCTION

Many synthetic compounds have been developed over the
years in an effort to improve people’s lives. However, it is
society’s obligation to ensure that these compounds do not
deleteriously affect the environment. Therefore, to evaluate the
possible impact of compounds on the environment, methods
needed to be developed to allow assessments to be conducted.
One of the goals of the scientific and regulatory community
has been to develop a standard set of exposure models to predict
expected environmental exposure based on proper use of crop-
protection products. Exposure models have been developed to
help predict and extrapolate compound behavior in groundwater,
surface water, and soil systems. Exposure models have become
popular in the regulatory community and with entities being
regulated because relatively few measurements can be used to
extrapolate to a wide variety of environmental conditions.
However, the effectiveness of a model to predict behavior can

only be as good as its representation of the environment it is
designed to predict. When the Office of Pesticide Programs
(OPP) at the U.S. Environmental Protection Agency (EPA)
assesses the risk of a pesticide, it considers the toxicity of the
pesticide as well as exposure to the pesticide. In assessing risk
to human health and the environment, the OPP routinely
estimates concentrations of pesticides in natural water bodies,
such as lakes or ponds, when it develops aquatic exposure
assessments. The pesticide program also estimates concentra-
tions of pesticides in water bodies when it considers the effect
of pesticides on the value of water resources in its water quality
assessments. OPP typically relies on mathematical models to
generate the exposure estimates for drinking water and aquatic
exposure assessments and water quality assessments. Models
calculate estimated environmental concentrations using labora-
tory data that describe how quickly the pesticide degrades and
how it may move in the environment.

FIRST is a program used to calculate both acute and chronic
generic expected environmental concentration values in drinking
water (DWECs). FIRST estimates runoff from a watershed into
a reservoir that would be used for drinking water. FIRST is the
EPA’s first tier or coarse screen, which estimates expected water
concentrations from a few basic chemical parameters and label
information. FIRST is designed to mimic a PRZM/EXAMS
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simulation. For tier 2 surface water screening assessments, the
OPP uses the linked PRZM and EXAMS models (PRZM/
EXAMS), which better model the specific characteristics of the
chemical. Standard scenarios used with PRZM/EXAMS include
more site-specific information regarding the application method
and the impact of daily weather on the treated field over a period
of 36 years compared to tier I models. As a higher level
screening tool, PRZM/EXAMS uses maximum application rates
and frequencies for a vulnerable surface drinking water reservoir.

The focus of this work was to evaluate the ability of two
exposure models, FIRST and PRZM/EXAMS, to predict
pesticide concentrations found in actual reservoirs used for
drinking water supply following standard EPA regulatory
modeling practice.

MATERIALS AND METHODS

One of the primary requirements for the compounds selected in this
comparison is that they were monitored for in the study we used for
comparison. Additional factors that helped determine which molecules
were selected included availability of compound physical/chemical
property information and that the EPA had standard crop scenarios
available for the uses we needed to model predictions for at the tier II
level. Model input parameterization of physical-chemical properties
was done following EPA standard operation procedures (1-7), which
can be found on the EPA’s OPP water model Web site. The physical-
chemical properties themselves were provided by the registrants having
compounds modeled in this research. The tier I modeling using the

FIRST model was conducted by the registrants, whereas the tier II
PRZM/EXAMS modeling was done by a third-party company. The
FIRST model provides an acute and a chronic value, whereas the
PRZM/EXAMS models were run for multiple years using the specific
crop and specific weather scenarios used by the EPA. For tier II
modeling, results from the multiple-year runs were sorted from high
to low, and the 90th percentile result was the value used for comparison
for both acute and chronic endpoints (following standard agency
procedures). Results from the modeling runs were then compared to
the maximum monitoring values found in the USGS reservoir study,
Pesticides in Selected Water Supply ReserVoirs and Finished Drinking
Water 1999-2000 Summary of Results from a Pilot Monitoring
Program(8). A brief historical background on the reservoir study design
is provided. The International Life Sciences Institute (ILSI) held a
workshop to address the question of water sampling frequency and
what various sampling schemes represent concerning accuracy and
precision (9). The ILSI group comprised academics, regulators, and
industry scientists. Conclusions from the workshop were that collection
of 33 samples per season produced 50th, 95th, and 99th percentile
estimates, which were well within the 90% confidence interval, and
between 1 and 25% of the true estimates. Furthermore, sampling weekly
was determined to be adequate for estimating the 50th, 90th, and 95th
percentile concentrations for acute assessments. Site number could also
be substituted for the required number of sampling years to accurately
describe concentrations. The conclusions from the workshop were
independently verified by a group of statisticians at the Research
Triangle Institute, Research Triangle Park, NC (9). The findings of
the ILSI group were used to design the USGS reservoir study we used
in this comparison.

Table 1. Summary of the Compounds Modeled, the Scenario Chosen, Application Method with Application Rate and Number of Applications

compound (class) EPA model scenario used
rate (lb/

acre)
appl no.
(interval) appl method

aldicarb (I) CA fruit (noncitrus) 10 1 ground
aldicarb (I) MS cotton 5 1 ground
aldicarb (I) FL citrus 5 1 ground
bromoxynil (H) MS cotton 0.5 3 (10 days) aerial
carbaryl (I) FL citrus 5 4 (14 days) aerial
acifluorfen (H) MS soybean 0.5 1 ground
bentazon (H) MS soybean 1 2 (14 days) ground
dicamba (H) CA alfalfa 0.5 2 (14 days) ground
imazaquin (H) MS soybean 0.13 1 ground
imazethapyr (H) OH corn 0.1 1 ground
MCPA (H) OR wheat 2 2 (90 days) ground
bentazon (H) MS soybean 1 2 (90 days) ground
dicamba (H) CA alfalfa 0.5 2 (14 days) ground
2,4-D (H) FL sugarcane 2.00 1 ground
2,4-DB (H) TX alfalfa 2.00 1 ground
clopyralid (H) OH corn 0.50 1 ground
flumetsulam (H) OH corn 0.07 1 ground
oryzalin (H) NC apples 6.00 1 ground
picloram(H) OR wheat 0.25 1 ground
tebuthiuron (H) FL sugarcane 20.00 1 ground
triclopyr (H) OR Christmas 9.00 1 aerial
benomyl (F) GA onions 1.0 3 (14 days) aerial
bensulfuron-methyl (H) 0.1 1 aerial
bromacil (H) FL citrus 1.9 2 (60 days) ground
chlorimuron-ethyl (H) MS soybean 0.019 2 (14 days) aerial
diuron (H) 12.0 1 ground
linuron (H) PA vegetable 1.0 2 (14 days) ground
methomyl (I) PA vegetable 0.9 10 (2 days) ground
metsulfuron-methyl (H) 0.188 1 ground
nicosulfuron (H) OH corn 0.063 1 aerial
oxamyl (I) NC apples 1.0 8 (5 days) airblast
sulfometuron-methyl (H) OR Christmas 0.375 1 ground
terbacil (H) LA sugarcane 1.2 2 (60 days) aerial
tribenuron-methyl (H) TX wheat 0.016 2 (14 days) aerial
2-hydroxyatrazine (D) LA sugarcane 4 (21 days) aerial
atrazine(H) LA sugarcane 2.5 4 (21 days) aerial
deethylatrazine (D) LA sugarcane 0.333 4 (21 days) aerial
deisopropylatrazine (D) LA sugarcane 0.07 4 (21 days) aerial
fluometuron (H) MS cotton 1.7 3 (14 days) ground
metalaxyl (F) GA peaches 4 3 (90 days) aerial
norflurazon (H) FL citrus 3.8 2 (180 days) ground
propiconazole (F) PA turf 1.78 4 (7 days) ground
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The stated objectives of the USGS reservoir study were to provide
estimates of annual-mean pesticide concentrations and high concentra-
tions that occur for short periods of time, such as the annual 95th and
99th percentile concentrations. The study collected and analyzed water
samples for two years from 12 reservoirs distributed throughout the
country. Monitoring frequencies varied from site to site and ranged
from a bimonthly baseline with 11 samples in a year to enhanced
sampling (every 3 days) at some sites during the use season for a
maximum of 37 samples per year. Sample collection was focused on
the primary application times for the products, May-September.
Periodic samples were collected in the winter months, normally
targeting January. The authors of the reservoir study state that the
systems selected for the monitoring program were reservoirs considered
to be highly vulnerable to pesticide contamination.

Table 1 is a summary of the compounds used for comparison in
this study along with the model scenario used, application rate, and
method of application. For tier I comparisons of modeling to monitoring
data, the monitoring value used was the maximum observed for both
acute and chronic model result comparisons. For tier II comparisons
of modeling to monitoring data, the acute modeled result was compared
to the maximum observed monitoring value obtained. For tier II chronic
comparison of modeling to monitoring data, the modeled result was
compared to the 95% monitoring value obtained.

RESULTS AND DISCUSSION

Tier I Modeling versus Monitoring. Once model runs were
completed using FIRST, it was then possible to compare the
predicted exposure estimates to actual monitoring data collected.
Figure 1 is the comparison of tier I predicted reservoir
concentrations with actual measured values. Modeled versus
monitored data are sorted from greatest overprediction to the
least as paired comparisons. Results presented inFigure 2
indicate that modeling resulted in several orders of magnitude
overprediction compared to actual water concentrations. To
determine if there was any relationship between overprediction
and model input, input factors were analyzed using a backward
stepwise regression. The backward stepwise analysis was used
to confirm and check that the authors had not overlooked any
process that might contribute to predictions. It was determined
that the total compound application rate (application rate×
number of applications) was the best indicator of model
overprediction.Figure 3 is a plot of the log of total active
ingredient applied to the log of overprediction (modeling/
monitoring). A regression coefficient of 0.64 (r2) was determined

from this relationship based on a simple regression. The next
step in our analysis was to make the same comparison done
with the acute values using the model-predicted chronic
concentrations.Figure 4 is the comparison of tier I chronic
predicted reservoir concentrations with actual measured values.
Modeled versus monitored data are sorted from greatest over-
prediction to the least as paired comparisons. Results presented
in Figure 5 indicate that chronic modeling values resulted in
several orders of magnitude overprediction compared to actual
water concentrations. As done similarly with the acute analysis,
a plot of the log of total active ingredient applied to the log of
overprediction (modeling/monitoring) was created. A plot of
the relationship can be found inFigure 6. A regression
coefficient of 0.39 (r2) was determined from the relationship,
which was not as predictive as the acute relationship. It was
not anticipated that a chronic relationship would be as predictive
as the acute relationship was. A simple explanation for the
differences in acute and chronic model prediction relationship
to total applied compound would be that acute (instantaneous)
model prediction does not take into consideration any degrada-

Figure 1. Comparison of tier I acute model predictions versus monitoring
results. Figure 2. Tier I acute overprediction (modeling/monitoring) by compound.

Figure 3. Regression of total pounds applied to tier I acute model
overprediction.
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tion mechanisms, whereas a chronic model prediction does.
Because chronic model prediction includes degradation mech-
anism processes, this can lead to sources of variance as
environmental conditions change.

Tier II Modeling versus. Monitoring. To make comparisons
of modeling to monitoring at tier II, the coupled exposure
models PRZM and EXAMS were used consistent with EPA
methodology. Once modeling was completed using PRZM/
EXAMS, it was then possible to compare the predicted exposure
estimates to actual monitoring data collected.Figure 7 is the
comparison of tier II predicted reservoir concentrations with
actual measured values. Modeled versus monitored data are
sorted from greatest overprediction to the least as paired
comparisons. Results presented inFigure 8 indicate that
modeling resulted in several orders of magnitude overprediction
compared to actual water concentrations. To determine if there
was any relationship between overprediction and model input,
factors were analyzed using a backward stepwise regression as
was done for the tier I modeling. On the basis of this analysis,
it was determined that total application (pounds/acre) was the
best indicator of model overprediction, similarly to tier I

analysis.Figure 9 is a plot of the log of total active ingredient
applied to the log of overprediction (modeling/monitoring). A
simple regression coefficient of 0.72 (r2) was determined from
this relationship. The next step in our analysis was to make the
same comparison done with the acute values using the model
predicted chronic concentrations. However, chronic comparisons
were made to 95th percentile monitoring values, whereas all
other comparisons were made to the maximum residue value
found.Figure 10 is the comparison of tier II chronic predicted
reservoir concentrations with actual measured values. Modeled
versus monitored data are sorted from greatest overprediction
to the least as paired comparisons. Results presented inFigure
11 indicate that chronic modeling values resulted in 2-4 orders
of magnitude overprediction compared to actual water concen-
trations. As similarly done with the acute analysis, a plot of the
log of total active ingredient applied to the log of overprediction
(modeling/monitoring) was made. A plot of the relationship can
be found inFigure 12. A regression coefficient of 0.41 (r2)
was determined from the relationship, which was not as
predictive as the acute relationship was. Because acute model
prediction does not take into consideration any degradation

Figure 4. Comparison of tier I chronic model predictions versus monitoring
results.

Figure 5. Tier I chronic overprediction (modeling/monitoring) by compound.

Figure 6. Regression of total pounds applied to tier I chronic model
overprediction.

Figure 7. Comparison of tier II acute model predictions versus monitoring
results.
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mechanisms whereas a chronic model prediction does, it was
not anticipated that a chronic relationship would be as predictive
as the acute relationship was. Although the findings of tier II
modeling were similar to those found in the tier I work, tier II
modeling regression relationships were slightly more predictive
than those developed in the tier I modeling. Tier II modeling
could have been expected to provide a slightly better regression
relationship because it requires many more inputs, which should
help increase precision.

Comparison of Tier I to Tier II Modeling. The purpose of
a tiered assessment process is that at tier I a simple and quick
assessment procedure is followed with the compromise of
reduced predictability. At tier II, a more involved assessment
process is required with the hope that a better prediction of
environment exposure will be achieved. Because parametriz-
ing a tier II model requires more data and time to obtain a
prediction, a question of interest is whether the time and data
requirements are worthwhile.Figure 13 is a comparison of tier
I to tier II acute model predictions. On the basis of the
comparison inFigure 13, it is apparent that although some

reduction in overprediction was obtained using tier II model-
ing methodology, the reductions were not consistent or a great
improvement in accuracy.Figure 14 is a comparison of tier I
to tier II chronic model predictions. From the comparison in
Figure 14, it is apparent that some reduction in overprediction
was obtained using tier II modeling methodology; however, the
reductions were not consistent or a great improvement in
accuracy, either. To gain some understanding of the model-
ing overpredictions observed in this work, it is necessary to
examine the conceptual index reservoir configured to represent
actual water bodies. The EPA’s index reservoir is a 172.8 ha
area watershed with a 5.3 ha surface area reservoir. The reservoir
is placed in the center of the watershed. The modeling includes
spray drift from either aerial or ground application methods,
which directly enters the reservoir from all directions. The
conceptual index reservoir design does not account for runoff
from fields untreated with the compound of concern. The
conceptual design has no base flow into the reservoir nor dilu-
tion of runoff water concentrations predicted to leave the field

Figure 8. Tier II acute overprediction (modeling/monitoring) by compound.

Figure 9. Regression of total pounds applied to tier II acute model
overprediction.

Figure 10. Comparison of tier II chronic model predictions versus
monitoring results.

Figure 11. Tier II chronic overprediction (modeling/monitoring) by
compound.
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traveling to the index reservoir. The index reservoir that both
the FIRST model and PRZM/EXAMS are meant to model
has no vegetative buffers or noncropped land. There is no
temporal component between when a storm event begins and
when it reached the index reservoir so that as soon as a rain
event occurs, it immediately enters the water-receiving body.
The scenario and it is implementation are more similar to an
agricultural field with an adjacent farm pond than to a drinking
water reservoir watershed system. Because the watershed and
reservoir system modeled are unrepresentative of an actual
watershed, it should not be surprising that predictions do not
approximate actual concentrations found in drinking water
supply reservoirs.

Development of a Modeling to Monitoring Correction
Factor. Because our backward stepwise regression analysis
confirmed that there was a relationship between the total amount
of compound applied in the models and their overprediction,
our findings are consistent with those of other researchers (10-
12). Therefore, an examination was made to determine if an
overprediction correction factor could be developed. Although
chronic exposure followed the trend that total pounds applied
was proportional to overprediction (r2 ) 0.41), degradation

processes were an influence on their usefulness for development
of an overprediction factor. Therefore, acute exposure predic-
tions provided a stronger indication (r2 ) 0.72) that an
overprediction correction factor could be developed from total
pounds applied being proportional to overprediction. Acute
(instantaneous) model predictions do not include the influence
of compound degradation because they are meant to be
instantaneous concentration values. Therefore, the influence of
degradation was minimized as a confounding factor for the
development of a correction factor.

The regression developed inFigure 15 describes the relation-
ship between total pounds applied and the tier II acute PRZM/
EXAMS model predictions.

From the relationship inFigure 15, eq 1 was developed

wherey ) log of model overprediction andx ) log of total
active applied.

As a computational example, the dicamba use pattern has a
maximum application rate of 0.5 lb/ac× two applications for
a total seasonal active application rate of 1.0 lb/ac.

Figure 12. Regression of total pounds applied to tier II chronic model
overprediction.

Figure 13. Comparison of tier I with tier II acute exposure predictions.

Figure 14. Comparison of tier I with tier II chronic exposure predictions.

Figure 15. Relationship between total active applied and PRZM/EXAMS
overprediction used to develop the overprediction factor.

y ) 2.156+ 1.03584x (1)
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Then

or

The PRZM/EXAMS scenario yielded an acute concentration
of 47.4µg/L. Taking into account the overprediction factor, a
reasonable monitoring concentration value of 0.33µg/L might
be expected in larger bodies of water using the overprediction
correction factor. The actual maximum concentration found in
the USGS reservoir study was 0.19µg/L. To address the concern
that the two year monitoring study might not adequately describe
the magnitude and frequency of residues occurring in water,
available monitoring data were obtained from the U.S. Geologi-
cal Survey National Agricultural Water Quality Assessment
program (NAWQA) data server. The data are from all available
sources of surface water in the database and are presented as
an indication that the data in the reservoir study are consistent
with other data collected to describe pesticide residues and the
analyses of ILSI and RTI. The overprediction correction factor
was also applied for each of the presented compounds sum-
marized from the NAWQA program. Based on a pairedt test,
the predicted concentrations after application of the overpre-
diction factor to modeled data and the NAWQA monitoring
data were not significantly different (p ) 0.05). A summary of
the data used in the comparison can be found inTable 2.

Conclusions. The historical development of the index
reservoir model concept begins at the development of the EPA’s
farm pond scenario. The farm pond, like the index reservoir,
has a field surrounding a water body that all of the designated
area drains into. Spray drift moves into the water body at a
fixed percentage of applied as well. Whereas the farm pond is
a more plausible representation of an actual environment, the
same representation of an actual environment for the index
reservoir has many more conceptual problems. It is suggested
that if the conceptual model representing an actual environment
is incorrect to begin with, it should not be possible for the
conceptual model to reflect actual exposure. The inability of
the models and the appropriate scenarios to predict surface water
concentrations is strongly indicated from our work. We suggest
that the failure of the conceptual index reservoir model to reflect
actual environmental factors is the dominant issue for poor
model predictions. Because comparisons presented in this paper
indicate that model predictions can range several orders of
magnitude greater than monitoring results, where monitoring
data are available, it is most scientifically sound to use them.
Additionally, the use of the overcorrection should be useful to
indicate more realistic exposure estimates.
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